First Detection of Augmentin and Colistin Resistant Cronobacter Sakazakii from a Pharmaceutical Wastewater in South-Western Nigeria
Avemaria Obasi,
Simon Cyril Nwachukwu,
Esther Ugoji
Issue:
Volume 2, Issue 1, June 2018
Pages:
1-9
Received:
8 May 2018
Accepted:
29 May 2018
Published:
12 June 2018
Abstract: Cronobacter sakazakii formerly known as Enterobacter sakazakii, is a bacterium with a rare cause but often fatal infection of the bloodstream and central nervous system. Infants with weakened immune systems, particularly premature infants, are most likely to contact a Cronobacter infection, although the bacteria have caused illnesses in all age groups. Most cases of C. sakazakii infection come from powdered infant formula (PIF) contaminated with the bacterium. Although relatively little information is known about the existence of Cronobacter in the environment, more reservoirs are being identified, such as water, soil and plant material. Wastewaters from 6 pharmaceutical industries located in a south-western state in Nigeria were sampled and analyzed. Bacteria were isolated using standard methods and species identification was determined by Gram staining, lactose fermentation, oxidase, catalase and Vitek 2. Antibacterial susceptibility to 25 antimicrobial agents was tested by the disc diffusion method and Vitek 2. Fifty nine Gram-negative bacteria were isolated and identified; one was identified as C. sakazakii. The bacterium was susceptible to all antibiotic mentioned but resistant to augmentin (amoxicillin/clavulanate) and colistin which are high potent drugs for the treatment of very stubborn infections. The public health implication of this fact is that this bacterium could be harbouring resistant genes that can be transferred through water ways such as the pharmaceutical wastewaters to bacteria of the same or different species of clinical importance. Therefore, continuous surveillance of the environmental reservoirs of antibiotic resistant bacteria is necessary to prevent their further spread.
Abstract: Cronobacter sakazakii formerly known as Enterobacter sakazakii, is a bacterium with a rare cause but often fatal infection of the bloodstream and central nervous system. Infants with weakened immune systems, particularly premature infants, are most likely to contact a Cronobacter infection, although the bacteria have caused illnesses in all age gro...
Show More
Mechanical Properties of Urea Formaldehyde Particle Board Composite
Ejiogu Ibe Kevin,
Odiji Mary Ochanya,
Ayejagbara Mosunmade Olukemi,
Shekarri Tachye Ninas Bwanhot,
Ibeneme Uche
Issue:
Volume 2, Issue 1, June 2018
Pages:
10-15
Received:
23 May 2018
Accepted:
7 June 2018
Published:
4 July 2018
Abstract: Particle boards were prepared from sawdust and urea-formaldehyde resin (UFR) on compression moulding machine. The particleboards were produced at a compression temperature of 150°C; a pressure of 10tons was applied for 15 minutes. The amount of sawdust was kept constant at 20g while UFR was varied from 30ml, 35ml, 40ml and 45ml respectively. The control sample (CS) was the 50ml UFR without any saw dust. The properties of the particleboards were tested using ASTM methods. The results showed that the properties of the particleboards are a function of the percentage composition of the binder (resin) and the filler (sawdust). The results showed that as the URF content increased from 30ml to 45ml, the mechanical properties increased. The hardness increased from 88.6 shoreA to 99 shoreA while the percentage of water absorption decreased as the UFR content increased. The swelling thickness decreased as UFR content increased. The density increased as URF content increased.
Abstract: Particle boards were prepared from sawdust and urea-formaldehyde resin (UFR) on compression moulding machine. The particleboards were produced at a compression temperature of 150°C; a pressure of 10tons was applied for 15 minutes. The amount of sawdust was kept constant at 20g while UFR was varied from 30ml, 35ml, 40ml and 45ml respectively. The co...
Show More
The Physico-Mechanical Properties of Unsaturated Polyester Resin Filled with Huracrepitan Pod for Wall Tiles Application
Ibeneme Uche,
Ejiogu Ibe Kevin,
Umar Muhammad Hamis,
Egwu Chinwe Euphemia,
Aiyejegbara Mosunmade Olukemi,
Ugbaja Michael Ifeayichukwu
Issue:
Volume 2, Issue 1, June 2018
Pages:
16-21
Received:
26 June 2018
Accepted:
16 August 2018
Published:
12 September 2018
Abstract: Huracrepitan pod was the fibre material used for this research and unsaturated polyester resin was used as the matrix. The huracrepitan pod was crushed with the aid of the Thomas-Willey laboratory mill machine, model 4 and was sieved using a standard sieve of 250 µm. The crushed huracrepitan pod was then soaked in a standard solution of 20% Sodium Hydroxide for 24 hours and washed with distilled water. It was later dried in the oven for an hour for final removal of moisture. I00 g of unsaturated polyester resin was reinforced with huracrepitan pod particles of filler loadings of 0 g, 10 g, 20 g, 30 g, and 40 g., while 90 g, 80 g, 70 g and 60 g of unsaturated polyester resin were reinforced with 20 g, 30 g and 40 g huracrepitan pod.The composites obtained were cut into dumbbell shapes and characterized to assess their performance. The hardness was enhanced to the maximum of 99.00 Shore A at 40% filler loading the percentage water absorption was found to be 0.3g. Pure unsaturated polyester resin recorded hardness of 94.67 Shore A, and water absorption of 0.30g and the percentage elongation optimum was found to be 15% at 40% filler loading and 2.5% at 0% filler loading. The results indicated that the use of huracrepitan pod particles as reinforcement can enhance the properties of polyester composites. It was observed that the samples with the highest filler loading absorbed more impact energy and also increased the elongation percentage. The application of Huracrepitan pod as filler in this work improved the mechanical properties of the thermosetting polymer.
Abstract: Huracrepitan pod was the fibre material used for this research and unsaturated polyester resin was used as the matrix. The huracrepitan pod was crushed with the aid of the Thomas-Willey laboratory mill machine, model 4 and was sieved using a standard sieve of 250 µm. The crushed huracrepitan pod was then soaked in a standard solution of 20% Sodium ...
Show More